Spatial Statistical Software

by

Stephen L. Rathbun
Department of Health Administration, Biostatistics, and
Epidemiology
College of Public Health
University of Georgia
Athens, GA 30605
rathbun@uga.edu

General Observations:

- Perhaps the single most limiting factor for dissemination a modern spatial statistical procedures is the limited availability of statistical software.
- Writing of statistical software involves the following trade-off:
 - Ease of use
 - Flexibility

1

Geostatistics

South Florida Ecosystem Assessment.

Sample Sites

Predicted Total Mercury

1

Outline: Review software for three areas of spatial statistics.

- Geostatistics.
- 2. Spatial Point Patterns.
- 3. Lattice Data.

3

4

Geostatistical Software:

- SAS
- Surfer
- ArcGIS Geostatistical Analyst
- S+SpatialStats
- R

5

SAS: REML Estimation of Variogram Model Parameters

Comments: SAS Geostatistics

- SAS is not menu driven. Analysis is carried out by writing SAS programs in the SAS editor.
 - For those who have experience with SAS, the geostatistical procedures are easy to apply.
 - Harder to use than menu-driven software.
- SAS has procedures for:
 - Isotropic and anisotropic variogram estimation (proc variog);
 - Variogram model fitting:
 - ► Weighted Least Squares (proc nlin);
 - ► Maximum Likelihood and REML (proc mixed).
 - Ordinary Kriging (proc krige2d).
 - Universal Kriging (proc mixed).
 - Generalized Mixed Models (proc glimmix).
- Limitations:
 - Limited choice of variogram models.
 - Cannot draw good contour maps.

9

Comments: Surfer

- Menu Driven
- Surfer has procedures for:
 - Variogram Estimation;
 - Least Squares Estimation of Variogram Model **Parameters**
 - Wide Variety of Variogram Models: exponential, Gaussian, linear, log, power, quadratic, rational quadratic, spherical, wave, pentaspherical, cubic.
 - Ordinary Kriging
 - Excellent mapping capabilities: contour maps; 3D surface maps; wireframe maps; vector maps; shaded relief maps.
- Limitations:
 - Cannot fit Matern variogram;
 - Universal kriging not available.

Surfer http://www.goldensoftware.com/

10

ArcGIS Geostatistical Analyst

http://www.esri.com/software/arcgis/extensions/geostatistical/index

Comments: ArcGIS Geostatistical Analyst

- Menu Driven
- Geostatistical Analyst has procedures for:
 - Isotropic and anisotropic variogram estimation;
 - Least squares estimation of variogram parameters;
 - Wide variety of variogram models: circular, spherical, tetraspherical, pentaspherical, exponential, Gaussian, rational quadratic, hole effect, k-bessel, stable.
 - Variety of kriging methods:
 - ▶ Ordinary kriging
 - ▶ Universal kriging
 - ► Indicator kriging (Binary Variables)
 - ▶ Disjunctive kriging (Nonliner Geostatistics)
 - ► Cokriging (Multivariate Geostatistics)
 - Crossvalidation for model diagnostics.
- Limitation: Expensive (\$2,500 for Geostatistical Analyst, \$1,500 for ArcView 9.1)

Definition: Crossvalidation.

- lacktriangle Remove the data at site s_i from the data set;
 - Use the remaining data to obtain the kriging predictor $\widehat{Z}_{-i}(\mathbf{s}_i)$ of the data at site \mathbf{s}_i
 - Compute the corresponding kriging variance $\sigma_{-i}^2(\mathbf{s}_i)$
- Repeat the above procedure for all sites.
- Compare observed values $Z(\mathbf{s}_i)$ with predicted values $\widehat{Z}_{-i}(\mathbf{s}_i)$
 - Bias Measure

$$CV_1 = \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{Z(\mathbf{s}_i) - \widehat{Z}_{-i}(\mathbf{s}_i)}{\sigma_{-i}(\mathbf{s}_i)} \right\}$$

■ Uncertainty Assessment

$$CV_2 = \frac{1}{n} \sum_{i=1}^n \left\{ \frac{Z(\mathbf{s}_i) - \widehat{Z}_{-i}(\mathbf{s}_i)}{\sigma_{-i}(\mathbf{s}_i)} \right\}^2$$

For a valid model, we should have

$$\text{CV}_1 \cong 0 \text{ and } \text{CV}_2 \cong 1$$

13

14

S+SPATIALSTATS http://www.insightful.com/products/spatial/default.asp

Variogram Estimation

Least Squares Estimation

S+SPATIALSTATS

Ordinary Kriging

Universal Kriging

15

Comments: S+SPATIALSTATS

- Menu Driven
- S+SPATIALSTATS has procedures for:
 - Isotropic and Anisotropic Variogram Estimation
 - Least Squares Estimation of Variogram Parameters (Weighted least squares with some work)
 - Limited variogram models: Spherical, exponential, Gaussian
 - Ordinary and Universal Kriging
 - Good quality contour maps
- Software has not been kept up to date.
 - Effort has been made to improve user interface.
 - No effort has been made to include modern methods.

R http://www.r-project.org/

Geostatistical Packages

- geoR http://www.est.ufpr.br/geoR/
 - Frequentist and Bayesian geostatistics.
- geoRglm http://www.daimi.au.dk/~olefc/geoRglm/
 - Geostatistics for counts data. Poisson and binomial models.
- fields http://www.image.ucar.edu/GSP/Software/Fields/
 Best for global data. Includes great circle distance.
- gstat http://www.gstat.org/
- RandomFields
 http://www2.hsu-hh.de/schlath/R/RandomFields/RandomFields_doc.

 Spatial simulation.

17

geoR: Variogram Modeling

geoR: Kriging

| Production | P

19

Comments: R

- Public domain software:
- Packages contributed by statistical researchers keep the software up to date;
- Command driven and interactive;
- GeoR has procedures for:
 - Variogram estimation;
 - Least squares, weighted least squares, REML estimation of variogram parameters;
 - Bayesian inference for model parameters;
 - Diverse variety of variogram models including the Matérn class;
 - Ordinary, universal and Bayesian kriging.
- GeoRglm has procedures for binomial and Poisson models for counts data:
- Fields includes great circle distance for investigating global data;
- Limitation: Not well documented.

Lattice Data Sudden Infant Death Rates in North Carolina

22

Lattice Model Software

- S+SPATIALSTATS
- BUGS
- R package: spdep

S+SPATIALSTATS Lattice Models

Moran's Index

CAR Model

Data
Data
Data
Data
Data
Spatial Structure
Meighbor Object sids ribbr30

Variables: bitths
Invibitits group
Statistic:
Sampling Type: Innorfree Innorfree
Num Bermute:

Results
Save As: sids con1
Fig. Print Results
DK Cancel Apply Id Current

Help

OK Cancel Apply Id Current

Help

24

23

Comments: S+SPATIALSTATS

- Menu Driven
- S+SPATIALSTATS has procedures for:
 - Defining neighborhood matrices
 - Defining spatial weights matrices
 - Computing Moran's I
 - Fitting spatial regression models:
 - ► Conditional AutoRegressive
 - ► Simultaneous AutoRegressive
 - ► Moving Average

GeoBUGS http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/geobugs.shtml

25 26

Comments: GeoBUGS

- Public domain software;
- Bayesian inference for lattice models:
 - CAR models
 - Poisson and binomial models with spatially dependent random effects.
- Data interface can use some work.

Spatial Point Pattern California Earthquakes

28

Point Pattern Software:

- S+SPATIALSTATS
- R

S+SPATIALSTATS

K-Function

29 30

Comments: S+SPATIALSTATS

- Menu Driven;
- S+SPATIALSTATS has procedures for:
 - Computing F-, G- and K-functions;
 - Testing complete spatial randomness;
 - Nonparametric estimation of the intensity function;
 - Fitting the point cluster process model.

R: Point Pattern Packages:

- spastat http://www.spatstat.org/
 Analysis of spatial point patterns.
- splanes http://www.maths.lanes.ac.uk/~rowlings/Splanes/
 Analysis of spatial and spatiotemporal point pattersn.
- MarkedPointProcess
 http://www2.hsu-hh.de/schlath/schlather.html#Software

 Analysis of marked point patterns.

Comments: R

- Public domain software;
- Packages contributed by statistical researchers keep the software up to date;
- Command driven and interactive;
- Spastat has procedures for:
 - Computing F-, G- and K-functions;
 - Testing complete spatial randomness;
 - Fitting the point cluster process model;
 - Simulating a variety of point process models;
 - Estimating parameters of modulated Poisson process model (covariates must be observed at all locations).

34

General Summary

- ArcGIS Geostatistical Analyst:
 - Menu driven;
 - A comprehensive collection of geostatistical methods;
 - Expensive.
- R:
 - Up-to-date methods for geostatistical and point pattern analyses;
 - Public domain;
 - Command driven and interactive.
- S+SPATIALSTATS:
 - Best for analysis of lattice data;
 - Menu driven.